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Cross-validation in PCA models with the element-wise k -fold

(ekf ) algorithm: Theoretical aspects.

April 16, 2012

Abstract

Cross-validation has become one of the principal methods to adjust the meta-parameters

in predictive models. Extensions of the cross-validation idea have been proposed to select the

number of components in Principal Components Analysis (PCA). The element-wise k -fold

(ekf ) cross-validation is among the most used algorithms for PCA cross-validation. This is

the method programmed in the PLS Toolbox, and it has been stated to outperform other

methods under most circumstances by Bro et al. (2008) in a numerical experiment. The ekf

algorithm is based on missing data imputation and it can be programmed using any method

for this purpose. In this paper, the ekf algorithm with the simplest missing data imputation

method, trimmed score imputation (TRI), is analyzed. A theoretical study is driven to identify

in which situations the application of ekf is adequate and, more important, in which situations

it is not. The results presented show that the ekf method may be unable to assess the extent

to which a model represents a test set and may lead to discard Principal Components (PCs)

with important information. On a second paper of this series, other imputation methods are

studied within the ekf algorithm.

Keywords: Principal Component Analysis, number of components, cross-validation, missing

data, compression.
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1 Introduction

Much work has been devoted to find an ’optimum’ -in some sense- or at least appropriate number

of PCs in a PCA model, especially considering a calibration data set so limited in size so that

external validation is not possible. A good survey on the matter can be found in the book by

Jackson [1].

Wold [2] proposed the use of cross-validation for the determination of the number of PCs. In

cross-validation, data are divided in G groups. Each time, a model is calibrated from the whole

data-set but a group. Afterwards, the data from that group are predicted using the model and a

Criterium of Goodness of Fit (CGF) is computed. This is repeated for each of the G groups and

a total CGF for a model is obtained. In PCA, the CGF is computed for the models with 1 PC, 2

PCs, 3 PCs, and so on. From the shape of the CGF, the optimum number of PCs is estimated.

Eastment and Krzanowski [3] and Nomikos and MacGregor [4] suggested the use of cross-validation

when the PCA model is going to be used for future observations, which are independent of the

calibration data. This is because cross-validation allows the estimation of the prediction error

expected for incoming data.

Recently, Bro et al. [5] compared most of the methods which are currently used with ”spectral-

type” data. They concluded that the one implemented in the PLS Toolbox [6] generally outper-

forms the other methods studied. Although cross-validation methods applying the Expectation-

Maximization (EM) algorithm gave similar results, this was at the expense of being computation-

ally intensive. The cross-validation approach in the PLS Toolbox is referred here as the element-

wise k -fold (ekf ) algorithm. It was originally suggested by Wold as an alternative method to the

one he also proposed in reference [2].

The ekf algorithm is based on the capability of missing data recovery of the PCA model

[7, 8, 9]. In each cross-validation iteration, some elements of the matrix of data are artificially

discarded and recovered with a missing data method; from the actual and the estimated values

of the discarded data, an estimation error is computed. The sum-of-squares of estimation errors
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(typically referred as the PRediction Error Sum-of-Squares or PRESS) is used as CGF to select

the number of PCs. The original ekf proposal by Wold and the cross-validation in the first releases

of the PLS Toolbox were based on the simplest missing data imputation method: the trimmed

score regression (TRI). The algorithm studied by Bro et al. [5] and the one found in new releases

of the PLS Toolbox are based on a slightly more complex imputation method: projection to the

model plane (PMP) [7].

Unlike other cross-validation approaches for PCA models, the ekf algorithm provides a PRESS

curve which may present a valley shape, with a minimum value. In principle, the lowest value of

PRESS is signaling the optimum number of PCs in terms of estimation error. This curve may be

easy to interpret for the practitioner due to its similarity to those obtained when cross-validating

regression models -e.g. for Partial Least Squares (PLS) models.

Due to the promising results of the ekf found in [5], there is a clear interest in this method.

This series of papers is devoted to characterize the PRESS curve provided by the ekf algorithm.

This study is useful to understand the performance of the algorithm, to determine potential

shortcomings and to identify in which situations the ekf is adequate to select the number of PCs

and in which situations it is not. In this paper, the focus is on the TRI version of the algorithm.

The PMP version, among other imputation methods, is studied in the companion paper. It should

be noted that this study shows that the original method based on TRI presents better properties

in front of noise, and therefore should be preferred.

The paper is organized as follows. In Section 2 the notation used throughout the paper is

presented. In Section 3 the ekf algorithm is introduced. The TRI missing data method is treated

in detail in Section 4. Using the results of this section, an efficient version of ekf is developed

in Section 5. Section 6 is devoted to characterize and understand the PRESS in ekf. Section 7

presents the inconsistency and directional dependence problems in ekf. Section 8 discusses the

results and Section 9 proposes some concluding remarks.
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2 Notation

Scalars are specified with lower case letters, column vectors with bold lower case letters and

matrices with bold upper case letters. Constants are specified with upper case letters.

Equations presenting matrix and vectorial products and sums of scalars are used indistinctly

throughout the paper for the sake of easy understanding. Without loss of generality, an explicit

ordering of the variables m ∈ {1, ...,M}, the observations n ∈ {1, ..., N} and the loading vectors

of the PCs a ∈ {1, ..., A} is assumed in the sums. The number of PCs in a model is specified

with A, whereas the maximum number of PCs in cross-validation is Amax. Groups of variables or

observations are specified in capital regular, using G for a group of observations and H for a group

of variables. The number of groups of observations and variables in cross-validation is specified as

Gtot and Htot, respectively.

A sum including all variables but m is represented by
∑
v ̸=m

A sum including all variables in a group H is represented by
∑
v∈H

A sum including all variables in a group H except variable m is represented by
∑

v∈H\m

3 Element-wise k-fold (ekf ) Cross-validation

Let us define matrix X as a N ×M matrix of data with N observations or objects on M variables.

The PCA of matrix X follows the expression:

X = TA · (PA)t +EA, (1)

where TA is the N ×A score matrix, PA is the M ×A loading matrix and EA is the N ×M

matrix of residuals.

For a 1×M object xt
n (n-th row of X) to be modelled, the corresponding 1× A score vector

(τA
n )

t (n-th row of TA) is obtained as follows:

(τA
n )

t = xt
n ·PA. (2)
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For each PC (A = 1...Amax)

For each group of objects (G = 1...Gtot)

Form X∗ with data from all groups but G

Form X# with data from G

Fit a PCA model from X∗, obtaining PA
∗ and TA

∗

TA
# = X# ·PA

∗

X̂# = TA
# · (PA

∗ )
t

RA
G = X# − X̂#

end

Combine matrices RA
G in RA

PRESSA =
∑N

n=1

∑M
m=1(r

A
n,m)2

end

Algorithm 1: Row-wise k -fold (rkf ) algorithm.

From the scores and the PCA model, the object can be reconstructed according to:

x̂A
n = PA · τA

n , (3)

the reconstruction error being:

rAn = xn − x̂A
n . (4)

The simplest cross-validation procedure is the so-called row-wise k -fold cross-validation or rkf

([10], through [11]). In each iteration of the rkf algorithm, a model is calibrated from the whole

data-set but a group of objects. These objects are afterwards passed through the PCA model and

the reconstruction error (4) is computed.

The rkf algorithm is presented in Algorithm 1. For the sake of easy understanding, the algo-

rithm is shown with two nested loops. The output of the algorithm is the matrix of reconstruction
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errors RA (with elements rAn,m in the n-th row and m-th column) and the PRESS computed for

A = 1...Amax PCs. Some authors argue that RA does not contain true prediction errors since the

estimation is not independent of the actual values in the objects–x̂A
n is obtained from xn through

(2) and (3). Nonetheless, for the sake of homogeneity with the ekf algorithm introduced below,

the term PRESS is used.

The ekf method is an extension of the rkf which is grounded in the following idea: since the

PCA model establishes relationship structures among the variables, its prediction power should be

measured by predicting the value of a variable from the rest taking into account these structures

-i.e., the PCA model. This idea is incorporated by adding a third nested loop in the ekf algorithm

which iterates through the variables.

The ekf method is specified in Algorithm 2. The inner loop, which iterates through the

variables, is highlighted in dark gray color and the core of the algorithm is in light gray color.

This core performs the missing values method, which is the direct estimation. This method will be

treated in detail in the following section. In the algorithm, the initial value for left out (missing)

variables is 0 (X#,h = 0). Assuming data have been mean centered, this is an unconditional

mean replacement which is equivalent to trimmed score imputation (TRI) [8]. The output of the

algorithm is the matrix of prediction errors EA (with elements eAn,m in the n-th row and m-th

column) and the PRESS computed for A = 1...Amax PCs.

In the rkf and ekf algorithms, one controversial point is to decide whether the preprocessing

information, i.e. the average and weight of the variables, should be estimated either from the entire

calibration dataX or else fromX∗ and then applied toX# within Algorithms 1 and 2. A discussion

regarding this matter can be found in several papers [2, 12, 5]. Here, under the assumption that

the model will be applied to future observations, the second option is preferred. For the sake of

easy understanding, parameters related to the preprocessing are omitted throughout the paper.

As stated in the introduction, one of the advantages thought for ekf PRESS curves is their

resemblance to PRESS curves from regression models. In regression models, PRESS curves tend to

present a valley shape, where the minimum represents the optimum model in terms of prediction

6



For each PC (A = 1...Amax)

For each group of objects (G = 1...Gtot)

Form X∗ with data from all groups but G

Form X# with data from G

Fit a PCA model from X∗, obtaining PA
∗ and TA

∗

For each group of variables (H = 1...Htot)

Set X#,H = 0

TA
# = X# ·PA

∗

X̂# = TA
# · (PA

∗ )
t

Restore its actual value to X#,H

EA
G,H = X#,H − X̂#,H

end

end

Combine matrices EA
G,H in EA

PRESSA =
∑N

n=1

∑M
m=1(e

A
n,m)2

end

Algorithm 2: Element-wise k -fold (ekf ) algorithm based on the TRI imputation.

performance or otherwise stated the best trade-off between bias and variance. Nevertheless, it

should be noted that the ekf does not always yield a PRESS curve with a clear valley shape or

minimum. To illustrate this, in Figure 1 four PRESS curves obtained by ekf cross-validation are

shown. The four correspond to typical chemometric data sets: batch process data, spectral data

and data for multivariate image analysis. The top examples are fat matrices (i.e. N << M), and

the valley shape and minimum is either not clear or nonexistent. The bottom examples in the

figure are thin matrices (i.e. N >> M) which do present a convenient valley shape for the selection

of the number of PCs. The remaining of this paper will be devoted to explain this behavior in the

PRESS curve of ekf.
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Figure 1: Four examples of PRESS curves by ekf with typical chemometric data. The examples

at the top correspond to fat matrices (more columns than rows) and the examples at the bottom

correspond to thin matrices (more rows than columns). Figures (a) and (c) correspond to simulated

batch data [13] batch-wise and variable-wise unfolded, respectively. Figure (b) corresponds to

spectral data and Figure (d) corresponds to a data set for multivariate image analysis [14].
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4 Overview of trimmed score imputation

To understand how the TRI method in the core of the ekf algorithm works, it is useful to charac-

terize the way PCA captures the relationships among variables. A detailed theoretical study on

this subject is performed in reference [15].

The reconstruction of an object xt
n using PCA, presented in equation (3), can be reexpressed

for each of the M elements xn,m of an object:

x̂A
n,m = (τA

n )
t · πA

m, (5)

where (πA
m)t is the 1×A vector with the loadings of variable m on the PCs, i.e. the m-th row

of PA. Combining equations (2) and (5) yields:

x̂A
n,m = xn,m · αA

m +
∑
v ̸=m

xn,v · βA
v,m, (6)

where:

αA
m =

A∑
a=1

p2m,a = (πA
m)t · πA

m, (7)

βA
v,m =

A∑
a=1

pv,a · pm,a = (πA
v )

t · πA
m. (8)

Equation (6) is a regression model showing that xn,m takes part in its own estimation with

weight αA
m and the values of the rest of variables xn,v with weight βA

v,m. Also, consider the following

definition:

QA = PA · (PA)t. (9)

Matrix QA is a M ×M symmetric matrix (projection matrix) where αA
m is the element in the

diagonal for row (or column) m and βA
v,m is the off-diagonal element on row v and column m. QA

has A eigenvalues equal to 1 and M −A eigenvalues equal to 0 [15].
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The properties of αA
m and βA

v,m are of utmost interest in this paper (see [15] for a detailed

justification of these properties). Parameters βA
v,m take values in the interval [-0.5, 0.5]. Parameters

αA
m take values in the interval [0, 1] and they strictly increase with the number of PCs. αA

m = 0 is

assumed for 0 PCs. As αA
m increases, the relevance of other variables in the estimation of variable

m according to (6) is reduced. αA
m = 1 will only happen when all the variability in m is captured

by A PCs -strictly speaking, for full rank- and variable m is not in the span of the other variables.

The reconstruction error for xn,m can be expressed as:

rAn,m = xn,m − (xn,m · αA
m +

∑
v ̸=m

xn,v · βA
v,m). (10)

Let us imagine that the actual value xn,m cannot be used in its own estimation in equation

(6). This happens in the ekf algorithm, since values xn,m are treated as missing values. In this

situation, xn,m can be estimated by substituting its value in equation (6) by a certain value x̂
(0)
n,m.

The estimation follows:

x̂(1)
n,m = x̂(0)

n,m · αA
m +

∑
v ̸=m

xn,v · βA
v,m. (11)

This is termed here as the direct estimation. In particular, for x̂
(0)
n,m = 0, this yields the TRI

method [8].

The estimation error is computed according to the following expression:

eAn,m = xn,m − x̂(1)
n,m. (12)

The difference between the reconstruction error rAn,m in (10) and the estimation error eAn,m in

(12) is that in the latter, the estimate x̂
(1)
n,m is computed without using the actual value xn,m. Recall

that rAn,m is computed in the rkf algorithm and eAn,m in the ekf algorithm. From the understanding

of the relationship between rAn,m and eAn,m, a more efficient version of the ekf algorithm is proposed

in Appendix A.

Figure 2 illustrates the geometry of TRI. The case for 2 original variables and 1 PC is presented.
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Var 1


Var 2


PC


Original observation


Var 2 set to 0


Trimmed score


Direct Estimate (TRI)


Figure 2: Geometric illustration of TRI with 1 PC of two original samples in a 2-dimensional

space.

In the example, two observations represented by a cross have the same value in variable 1 but very

different values in variable 2. Assume the value corresponding to variable 2 is missing in both

observations. TRI starts setting those missing values to zero. Then, the two original observations

are transformed into the point represented by the square. This point is projected on the PC

and the resulting point (the trimmed score represented by a triangle) is projected on variable 2.

The TRI estimate of the original observation is represented by the circle. Note that the estimate

of both original observations is the same because they are computed from the common value of

variable 1.

5 Characterization of the estimation error in ekf

The results presented in this section and Appendix B hold in general for the error by TRI, making

no difference if the object was not used to calibrate the PCA model (as in cross-validation) or it

was in fact part of the calibration data. Therefore, instead of the term PRESS, we will use the

more general sum of squares of estimation errors (SSE). Notice the SSE includes the PRESS as a

special case.

The SSE associated to a variablem forA PCs is computed according to the following expression:
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SSEA
m =

Nt∑
n=1

(eAn,m)2, (13)

where Nt is the number of objects used to compute the SSE and eAn,m is the estimation error

by TRI. The SSE of the complete data set, SSEA
T , is equal to:

SSEA
T =

M∑
m=1

SSEA
m. (14)

5.1 Theoretical constraints on the ekf curve

In PCA, an observable variable can be seen as the sum of: redundant information or shared

variance, which can be found in another observable variable, and non-redundant information

or unique variance, which is not found in any other observable variable. A variable with any

content of non-redundant information is not in the span of the rest of variables, and so it cannot

be expressed as a linear combination of the others. A variable solely composed of redundant

information may or may not be in the span of the rest. For instance, take the simple case of two

variables X1 and X2, so that X2 = X1 + E, with E a measurement error, and X1 and E are

independently generated. Although X1 is completely composed of redundant information, since

its variability is repeated in X2, it is not in the span of X2.

The estimation error of a single variable computed with ekf presents a number of properties -

the mathematical proofs can be found in Appendix B:

Property 1 The estimation error in ekf of a variable in the span of the other variables for

a PCA model with A = Rank(X)1 components is not null and depends on the error in the initial

estimation.

Property 2 The estimation error in ekf of a variable not in the span of the other variables

for a PCA model with A = Rank(X) components is equal to the error in the initial estimation.

1In the ekf cross-validation, the rank of interest is that of matrix X∗.
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Property 3 The SSE of a variable (SSEA
m) according to ekf attainable by any PCA model is

lower bounded by the sum of squares of the non-redundant information in that variable.

There are interesting comments on these properties. It is known that a variable which belongs

to the span of the rest can be perfectly recovered from a linear combination of the others. Still,

according to Property 1, the estimation error with ekf for a full rank model is not null as it would

be expected. This is a straightforward consequence of using TRI as the missing data method and

also applies to any direct estimation. Property 2 reflects the opposite case. For full rank, not even

a portion of information of a variable out of the span of the rest is recovered. In this situation, the

PCA model is useless for that purpose. Notice that even a slight portion of measurement noise

or numerical error may cause a variable to be out of the span of the others, provided the number

of observations is high enough. For instance, recall the previous example with variables X1 and

X2 = X1 +E measured in a data set. If a value of X1 is missing, it cannot be recovered by using

TRI with a PCA for full rank (2 PCs). This is true even for very low variance in E. Property 3

reflects a limitation of ekf : the non-redundant information, although may be properly captured

by the PCA model, is always included as part of the predictive error in ekf.

From the previous three properties, two additional properties for the SSEA
T curve can be

presented2. Recall that the SSEA
T corresponds to the sum of SSEA

m terms for all variables in the

data set.

Property 4 The SSE of a data set (SSEA
T ) according to ekf for A = Rank(X) is lower or

equal to the SSE of the initial estimation, being equal when the number of variables equals the rank.

Property 5 The SSE of a data set (SSEA
T ) according to ekf attainable by any PCA model is

lower bounded by the sum of squares of the non-redundant information in the data.

2Property 5 is a corollary of Property 3, but property 4 needs further derivation in Appendix B.
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In Figure 3, two typical SSEA
T curves computed by ekf are shown. When the number of

variables is equal to the rank of the matrix of data (#var = rank), all variables satisfy Property

2 and the SSEA
m for both A = 0 and A = Rank(X) match. A straightforward consequence is that

the SSEA
T for both A = 0 and A = Rank(X) also match (Property 4). This is coherent with the

PRESS curves found for the thin matrices in Figures 1(c) and 1(d). On the other hand, if the

number of variables is higher than the rank, some variables satisfy Property 1 instead of Property

2. When the number of variables gets much higher than the rank (#var >> rank), then most

likely all variables satisfy Property 1. In that situation, the SSEA
m for A = Rank(X) is different to

that for A = 0 and the resulting SSE
Rank(X)
T is in fact lower than SSE0

T , as illustrated in Figure

3. This is found in the PRESS curves of the fat matrices in Figures 1(a) and 1(b).

In real data, some content of non-redundant information is likely to be present in all variables

since a certain amount of -linearly independent- measurement noise is always expected. Linearly

dependent variables are only expected as a result of mathematic computations (artificial variables)

or due to an insufficient number of objects in the data -so that the rank is determined by the number

of objects N instead of the number of variables M . Therefore, #var >> rank is hardly found

except when N << M (i.e. fat matrices). The latter is the most challenging situation from the

chemometrics point of view, since N << M is often found in batch process data, spectroscopy,

system biology, etc.

In both situations when #var = rank and when #var >> rank, according to Properties

3 and 5, the amount of non-redundant information imposes a minimum value for each SSEA
m

and for SSEA
T . This is also depicted in Figure 3. The MIA data set [14] (Figure 1(d)) will be

further employed to illustrate this effect of the non-redundant information in the PRESS curve.

The PRESS is computed for the data set corrupted with different levels of white measurement

noise, i.i.d. in the 21 variables. As shown in Figure 4, the more the noise introduced the higher

the minimum in the PRESS curve. This effect is expected since the white noise introduces only

non-redundant information to the data, increasing the minimum attainable by the PRESS curve.

Note that as measurement noise increases the minimum of the PRESS curve is attained at a

14



Amount of non-redundant information

# PCs

SS
E # var >> rank

# var = rank

SSE of initial estimation (0 PCs)

rank

Figure 3: Typical examples of SSEA
T by ekf. For #var = rank, all variables satisfy Property 2 and

the SSEA
T for both #PCs = 0 (the initial est.) and #PCs = rank coincide. For #var >> rank,

most likely all variables satisfy Property 1 instead of Property 2. In any case, the curves remain

above the amount of non-redundant information (Property 3).

lower number of PCs. Therefore, a high content of non-redundant information may lead to an

underestimation of the number of PCs.

5.2 Rationalization of the valley-shape of the ekf curve

Properties 1, 2 and 4 defined in previous section constrain the value of SSEA
m and SSEA

T for full

rank. This constraint favors the valley shape of SSEA
m and SSEA

T curves. Let us focus on the

leave-one-variable-out case for a deeper discussion on this valley shape. From (18) and (14), the

SSEA
m of TRI of leave-one-variable-out follows:

SSEA
m = (αA

m)2 ·
Nt∑
n=1

(xn,m)2 + 2 · αA
m ·

Nt∑
n=1

xn,m · rAn,m +

Nt∑
n=1

(rAn,m)2. (15)

Parameter αA
m is a sum of squares (7) and so it is monotonically increasing with A. Therefore,

the first factor in (15) is also monotonically increasing withA since
∑Nt

n=1(xn,m)2 remains unaltered

as A varies. On the other hand, each PC added to a PCA model reduces the sum of squares

of reconstruction error. This makes the third factor of (15) show decreasing tendency with A,

although it does not need to be strictly decreasing. The way the second factor of (15) will evolve
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Figure 4: PRESS curves by ekf for the auto-scaled Firenze data set [14] with different levels of

white noise introduced: from a 0% (noise-free data) to a 100% of noise (equal variance of noise

and data).

as A increases is undetermined a-priori. It combines αA
m, which increases with A, with

∑Nt

n=1 xn,m ·

rAn,m. The latter is a measure of the correlation between original data and residuals, correlation

that clearly decreases with A.

For 0 PCs there is no information about the relationships among variables and no variance

is captured by the model, so that SSE0
m =

∑Nt

n=1(xn,m)2. On the other hand, for full rank

it holds that rAn,m = 0 ∀n, so that SSE
rank(X)
m = (αA

m)2 ·
∑Nt

n=1(xn,m)2, fulfilling Property 1.

In particular, since αA
m ≤ 1 [15], then SSE

rank(X)
m ≤ SSE0

m, like in the examples of Figure

3. SSE
rank(X)
m is maximum when m does not belong to the span of the rest of variables (and

so it cannot be expressed as a linear combination of the others), so that αA
m = 1 [15]. Then,

SSE
Rank(X)
m =

∑Nt

n=1(xn,m)2 = SSE0
m, satisfying Property 2.

Equation (15) shows a compromise between variance captured (reduction of rAn,m) and model

structure (αA
m). This can also be thought of as the trade-off between bias and variance in the

prediction of a variable from the others. When the SSEA
m curve decreases during the first PCs it

means that the decrease of the third factor in (15) dominates the increase in the first and second

factors. This happens for PCs of high variance (high reduction of rAn,m) with high loads of many

variables (low αA
m values reflecting redundant information captured). On the other hand, the value
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of SSEA
m for full rank is constrained as already discussed. In particular, for #var = rank (Figure

3), the SSEA
m has to rise during the last PCs to the same height it fell during the first PCs.

Thus, if the SSE previously decreased, the first factor in (15) will dominate the third factor in

(15) for the remaining PCs. This evidences a high content of non-redundant information captured

(e.g. measurement noise) in those PCs. This causes the valley shape in the PRESS, observed

for instance in Figure 4, especially for low noise percentages. On the other hand, variables solely

composed of non-redundant information do not present such valley shape in the SSEA
m curve.

This is coherent with the effect observed in Figure 4 when introducing a high percentage of i.i.d.

noise in the MIA data set.

It has been shown that typical SSE (or PRESS) curves may be easy to interpret but, why are

there situations in which the SSEA
T becomes so irregular? The answer to that is straightforward.

The SSEA
T is a pool of expressions similar to equation (15) for the different variables. Therefore,

whereas the first factor may be low for some variables, it may be high (compared to the third

factor) for others -especially those with a high content of non-redundant information. In that

situations, the SSEA
T may be complex to interpret. A nice example of a data set with such a pool

of different behaviors is presented in [15].

6 Inconsistency and directional dependence

From the derivation presented in this paper, it is clear that the prediction error of a PCA model,

computed with TRI, depends on how the information in a variable can be recovered from the others.

This implies a number of shortcomings for the ekf cross-validation reviewed in this section.

Consider the examples shown in Figure 5. In each of the two rows of figures, a different direction

for the first PC is considered. The figures in the second column geometrically characterize the ratio

between the SSE of TRI in the model with 1 PC and the total sum of squares. Thus, observations

laying in the areas with value lower than 1 (light areas) yield a lower prediction error for a model

with 1 PC than for 0 PCs, the latter being their sum of squares.
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Figure 5: Geometrical characterization of the ratio between the SSE of TRI in the model with 1

PC and the total sum of squares. This allows to identify the areas where the first PC improves the

prediction performance of missing elements. Two different directions for the first PC are shown

in the rows. Also, two groups of observations are superimposed on the color maps and their

estimation error by TRI is signaled.
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Figure 6: Data obtained from simulated scores and different loading vectors. The scores for the

first PC are simulated with zero mean and unit variance. The scores for the second PC are

simulated with zero mean and 0.1 variance.

The areas in which there is an increase or reduction of SSE match for the two examples (top-left

and bottom-right quadrants). In both cases, the best estimation performance is obtained for the

points close to the line −var1 = var2, the bisector, independently of the specific direction of the

first PC. Thus, the reduction of SSE is mainly determined by the direction of the original variables

in the space, which establish the quadrants in the space. The direction of the PCs only determines

in which quadrants there is a reduction of SSE. The implications of this are important. Take the

two sets of observations in the plot. The observations in dark color are closer to the first PC

that the observations in light color, which are closer to the bisector. Nevertheless, the SSE of the

former is higher than the SSE of the latter. The conclusion is that the SSE by TRI (and so by the

ekf algorithm) is inconsistent. The inconsistency problem can be found in general for any number

of variables and eigenvalues distribution (see Appendix C), although the points where the SSE

attains its minimum value do not necessary have to be the bisectors of the original variables. The

inconsistency problem prevents from using the error by TRI to assess the extent to which a model

represents a test set of observations, not used during the model calibration. This is because a set

of observations with a variance-covariance structure not reflected by the PCA subspace may yield

a lower estimation error than observations very much distributed according to the PCA subspace.

On the other hand, although the areas in which there is and increase or reduction in SSE

match for the two examples in Figure 5, the amount of increase or reduction is clearly different.
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Figure 7: SSEA
T curves for TRI (a) and reconstruction (b) errors using the data of Figure 6.

In the first example, the prediction error greatly varies for observations located at different points

in the original space. In the second example, the difference between two points is much lower

and the ratios are always close to 1. The magnitude of the ratio depends on the angle of rotation

between both the original space and latent sub-space. As a conclusion, TRI (and so the ekf

algorithm) suffers from directional dependence, since for rotated PCs the same true relationship

yields different SSE values.

Again, directional dependence has important implications. Let us propose an illustrative ex-

ample. The same distribution is assumed for a set of scores in the two examples of Figure 5.

Imagine these two examples are the result of observing the same underlying phenomena with

different measured variables3. For instance, the scores of the first PC are normally distributed

with unit variance representing useful information. The scores of the second PC are also normally

distributed with variance equal to 0.1 representing measurement noise. The distribution of the

resulting observations is shown in Figure 6. If the prediction error is computed as a quadratic sum

of the TRI errors, the SSE curve is completely different. This is shown in Figure 7(a). For the first

case, the SSE presents a clear minimum for 1 PC, whereas in the second example the improvement

is negligible. In this latter case, an analyst may arrive to the conclusion that the first PC is not

representing useful information. This would be an incorrect conclusion. In both cases, the PC

improves data understanding. For the first example, it tells us that a linear relationship among

3The use of different measured variables may also, but not necessarily, change the variance in the scores.

20



the two variables exists. For the second example, it tells us that the variability is concentrated

in ’Var1’ and that a linear relationship among the two variables is not found. This information is

as important as the information given in the first example. Furthermore, if the model is used for

monitoring, the first PC, which is representative of the underlying phenomena, should be added to

the model in either of both examples. Therefore, in scenarios with high amount of non-redundant

information the ekf algorithm may lead to underestimate the appropriate number of PCs (i.e.

underfitting). This was already shown in Figure 4.

The directional dependence is a manifestation of the fact that the estimation error by ekf

depends on the parameters αA
m and βA

v,m (see equation (20)), i.e. on how the information is

arranged through the observable variables. The non-redundant information in the data may affect

the PRESS shape, but in a fairly complicated way, depending on how this information is combined

with redundant information in the variables. If groups of variables are left out at the same

time within the cross-validation algorithm, only variables outside one group affect the PRESS

of variables within that group. Thus, the PRESS relies heavily on how the groups of variables

are selected. Also, no matter the content of measurement noise in the variable, the PRESS is

constrained to arrive to a certain value for full rank. Therefore, a small content of noise may cause

a steep increase of the PRESS.

Let the same experiments be repeated using the reconstruction error. The results are presented

in Figures 8 and 7(b). In this case, the distribution of the error does not depend on the original

space, but only on the latent space. The areas where there is an improvement of estimation

are rotated according to the PCs and without any additional transformation. Therefore, the

reconstruction error (and in particular the rkf algorithm) does not suffer from inconsistency or

directional dependence. In the literature it has been stated that this is an incorrect way to assess

the prediction error of a PCA model, because the estimation of a value is not independently

calculated from that value (6). Nonetheless, due to the inconsistency and directional dependence

problems of the ekf algorithm, the use of rkf may be more appropriate than that of ekf in some

applications. For instance, the rkf is applied to compute the goodness of prediction index Q2 used
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Figure 8: Geometrical characterization of the ratio between the reconstruction error in the model

with 1 PC and the total sum of squares. Two different directions for the first PC are shown in the

rows. Also, two groups of observations are superimposed on the color maps and their estimation

error by TRI is signaled.

in the SVI plots proposed in [15] for data interpretation.

7 Discussion

There are several theoretical arguments against the convenience of the use of the ekf PRESS curve

to determine the number of PCs in many situations. The PRESS by ekf measures the relevance

of a piece of information by the amount of variance and the number of variables in which it is

reflected. Therefore, this method is not suited to decide the number of PCs when the objective is

the interpretation or the monitoring of the latent phenomena, or to compress the data. In none of

these applications, the number of replications of the same piece of information should be a concern

to decide the addition of a PC. For instance, relevant information for monitoring, interpretation

or compression may be reflected in one single variable, and the PRESS curve by ekf would not
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show this at all. At the same time, certain types of noise may be correlated in several variables.

The objective for which ekf was originally proposed [2] was to find the ’optimum’ number of

PCs in the PCA model (1). This is not a well-defined objective unless we define the meaning

of ’optimum’. The error estimated by ekf may be defined as ”the error when trying to recover

missing values in incoming data”. Therefore, the number of PCs selected according to ekf is the

one which minimizes the sum-of-squares of this prediction error. The model with this number of

PCs is expected to yield the lowest prediction error of missing data in future objects, provided

these missing elements are recovered with the same estimation method used in ekf. Thus, the ekf

is specifically suited when the objective of the PCA model is missing data recovery.

Considering the previous discussion, a reader may wonder why the ekf has been found to yield

in general a good performance in numerical experiments [5], in particular in ”spectral-like” data.

First of all, it should be noted that the cited reference is restricted to the application referred to

here as compression (nor monitoring or interpretation), where the aim is to distinguish between

true structure and measurement noise. Although theoretically the ekf is not suited to determine

the number of components in compression, it should be noted that it is in general a good heuristic

for that provided the variables are correlated, like in spectra. In that case, the first PCs capture a

high portion of variance shared by a lot of variables. These PCs make the PRESS by ekf reduce.

On the other hand, non-correlated measurement noise of low variance will be found in the last PCs,

which satisfy the aforementioned requirements to make the PRESS rise. Nevertheless, this good

performance in compression may not generalize to all types of chemometrics data sets, specially

when variables solely composed of non-redundant information are found. For instance, this may be

the case of some industrial process data sets registering measurements from different instruments,

process stages, and so on.
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8 Conclusion

In applications in which Principal Components Analysis (PCA) is used, the results obtained can

be very different depending on the number of principal components (PCs) selected. Therefore,

the method to determine the appropriate number is critical. It is extremely important to be

aware of the features of the method used, instead of applying it blindly. Unfortunately, this is

not the current practice. For instance, most cross-validation approaches are applied without a

conscientious knowledge of their features.

The aim of this paper is to provide a theoretical study on cross-validation. In particular, this

paper is devoted to characterize the predictive error sum-of-squares (PRESS) curve provided by

the element-wise k -fold (ekf ) algorithm based on the trimmed score imputation (TRI) method.

This is the algorithm originally programmed in the PLS Toolbox. Also, an extension of this

algorithm based on other imputation method was recently stated to outperform other methods

under most circumstances for the determination of the number of components in PCA models [5],

in particular in ”spectral-like” data. This extension, among others, is studied in the second part

of this series.

In the ekf, the minimum in the PRESS curve is used to determine the number of PCs to

retain. The theoretical derivation performed in this paper is not only useful to understand the

PRESS curve provided by the algorithm, but also to determine its shortcomings and to identify

in which situations its use is adequate and, more important, in which situations it is not. The

results presented show that the ekf method may be unable to assess the extent to which a model

represents a test set and may lead to discard Principal Components with important information.

Another contribution of this paper is a computationally efficient version of the ekf algorithm

based on TRI. Although this version is faster than the original one, it is specially profitable for a

high number of variables in the data set. For instance, for 10.000 variables the computation time

was reduced in one order of magnitude.
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A An efficient ekf algorithm

The direct estimation introduced in Section 4 for the leave-one-variable-out case, eq. 11, can be

extended to the more general case when the values of several variables are missing at the same

time:

x̂(1)
n,m = x̂(0)

n,m · αA
m +

∑
v∈Hm\m

x̂(0)
n,v · βA

v,m +
∑

v ̸∈Hm

xn,v · βA
v,m, (16)

where Hm is a group of variables which are estimated at the same time than variable m in the

inner loop of ekf.

In this section, a computationally efficient version of the ekf algorithm is proposed. The

standard formula for TRI used in the ekf algorithm is based on (16) and (12) for x̂
(0)
n,v = 0,∀v ∈ Hm:

eAn,m = xn,m −
∑

v ̸∈Hm

xn,v · βA
v,m. (17)

Alternatively, an efficient formula can be found by using the reconstruction error. Let us show

the procedure for direct estimation and then particularize for TRI. From (10), (11) and (12),

the estimation error associated to the direct estimation of the leave-one-variable-out case can be

computed:

eAn,m = ϵ(0)n,m · αA
m + rAn,m, (18)

where:

ϵ(0)n,m = xn,m − x̂(0)
n,m. (19)

This can be straightforwardly extended to the case where multiple variables are estimated at

the same time:

eAn,m = ϵ(0)n,m · αA
m +

∑
v∈Hm\m

ϵ(0)n,v · βA
v,m + rAn,m. (20)
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Since in TRI it holds that x̂
(0)
n,v = 0,∀v ∈ Hm, the formula (20) becomes:

eAn,m = xn,m · αA
m +

∑
v∈Hm\m

xn,v · βA
v,m + rAn,m. (21)

Although in (21) there are more operations than in (17), rAn,m can be computed outside the

inner loop of ekf. When the number of variables out of group Hm is higher than that in Hm, the

use of (21) is more profitable than that of (17) in terms of computation time. To design the ekf

algorithm using (21), the inner loop (in dark gray color in Algorithm 2) is replaced by:

TA
# = X# ·PA

∗

X̂# = TA
# · (PA

∗ )
t

RA
G = X# − X̂#

For each group of variables (H = 1...Htot)

QA
∗,H = PA

∗,H · (PA
∗,H)

t

EA
G,H = X#,H ·QA

∗,H +RA
G,H

end

where PA
∗,H is the sub-matrix of PA

∗ corresponding to the variables (rows) belonging to group

H. Thus, PA
∗,H has as many rows as the number of variables in H and A columns.

In particular, for Htot = M (one variable per group, i.e. Hm = {m}), QA
∗,H becomes a scalar

and the inner loop can be substituted by a matrix multiplication.

In Table 1, rkf and the two versions of ekf (named ekf and efficient ekf or eekf ) are com-

pared in terms of computation time for different matrix sizes and Gtot = N and Htot = M in the

MATLAB environment. The eekf version where the inner loop is replaced by a matrix multipli-

cation, referred to as eekf2, is also considered. The algorithm eekf is faster than ekf in all the

cases studied, but larger differences are found for high Htot values. The differences between eekf

and eekf2 approaches are due to the different computation time in the MATLAB environment

between a ’for’ loop and a matrix operation performing the same computation. Therefore, these

differences are expected to hold only in the MATLAB environment. The eekf2 method is so fast
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its computation time is similar to that of the rkf approach.

Table 1: Comparison of computation time (seconds) in the MATLAB execution of the traditional

ekf version, the efficient version (eekf ), the efficient version where the inner loop has been replaced

by a matrix multiplication (eekf2 ) and rkf. For all the cases, A = 10, Gtot = N and Htot = M .

Computations performed on Intel(R) Core(TM)2 Duo CPU T7500 2.20GHz and 1,99 GB RAM

running XP Professional operative system.

N ×M 100× 10 100× 100 100× 1000 100× 10000

ekf 0.40 1.93 7.13 351.03

eekf 0.32 1.80 4.53 30.19

eekf2 0.31 1.72 3.76 21.96

rkf 0.31 1.72 3.73 21.88

B Properties of ekf

Property 1 The estimation error in ekf (or in general from direct estimation) of a variable in

the span of the other variables for a PCA model with A = Rank(X) components is not null and

depends on the error in the initial estimation.

Proof:

The reconstruction of an observation from the PCA model is perfect for A = Rank(X). There-

fore, the reconstruction error is null:

xn,m = xn,m · αA
m +

∑
v∈Hm\m

xn,v · βA
v,m +

∑
v ̸∈Hm

xn,v · βA
v,m, A = Rank(X). (22)

Thus, the estimation error follows:
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eAn,m = (xn,m − x̂(0)
n,m) · αA

m +
∑

v∈Hm\m

(xn,v − x̂(0)
n,v) · βA

v,m, A = Rank(X). (23)

Therefore, this error depends on the initial estimation. Notice this holds in general for every

initial value of x̂
(0)
n,m, not only for 0.

Property 2 The estimation error in ekf (or in general from direct estimation) of a variable

not in the span of the other variables for a PCA model with A = Rank(X) components is equal to

the error in the initial estimation.

Proof:

Equation (22) can be re-expressed as:

xn,m =
∑
v ̸=m

xn,v ·
βA
v,m

1− αA
m

, A = Rank(X). (24)

Since variable m does not belong to the span of the others, it can be expressed as:

xn,m =
∑
v ̸=m

xn,v · kv,m + yn,m, yn,m ̸= 0, (25)

this is a contradiction of (24) except for the case αA
m = 1. In that case, it holds [15] that

βA
v,m = 0, ∀v ̸= m ∈ {1, ...,M} and (24) presents an indeterminate from. In that situation, from

(16) we know that:

x̂(1)
m,n = x̂(0)

m,n. (26)

Property 3 The SSE of a variable (SSEA
m) according to ekf (or in general from TRI) attain-

able by any PCA model is lower bounded by the sum of squares of the non-redundant information

in that variable.

Proof:
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Any variable can be expressed as the sum of redundant information -which can be recovered

from the other variables- and non-redundant information (yn,m):

xn,m =
∑
v ̸=m

xn,v · kv,m + yn,m. (27)

For those variables which are a linear combination of the others, then yn,m = 0. Rearranging

equation (27):

yn,m = xn,m −
∑
v ̸=m

xn,v · kv,m. (28)

By convention, let us set parameters kv,m so that the sum of squares of yn,m for all observations

is minimum, i.e. minkv,m

∑N
n=1 y

2
n,m - that is, the best fit in the quadratic sense. This means that

we are choosing kv,m so that the sum of squares of the error of estimating m from the rest of the

variables is minimum. With this definition we can assure that any qn of the form:

qn = xn,m −
∑
v ̸=m

xn,v · rv, (29)

will satisfy that
∑N

n=1 y
2
n,m ≤

∑N
n=1 q

2
n.

From (16), the prediction error of ekf in equation (12) can be expressed as:

eAn,m = xn,m − (x̂(0)
n,m · αA

m +
∑

v∈Hm\m

x̂(0)
n,v · βA

v,m +
∑

v ̸∈Hm

xn,v · βA
v,m), (30)

which can be rearranged as:

eAn,m + x̂(0)
n,m · αA

m +
∑

v∈Hm\m

x̂(0)
n,v · βA

v,m = xn,m −
∑

v ̸∈Hm

xn,v · βA
v,m, (31)

which follows the form in (29) for:

rv =


0, for v ∈ Hm

βA
v,m, for v ̸∈ Hm

, (32)

so that the following can be assured:
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N∑
n=1

y2n,m ≤
N∑

n=1

(eAn,m + x̂(0)
n,m · αA

m +
∑

v∈Hm\m

x̂(0)
n,v · βA

v,m)2. (33)

In particular, for TRI (as in the definition of the ekf algorithm of this paper):

N∑
n=1

y2n,m ≤
N∑

n=1

(eAn,m)2. (34)

Property 4 The SSE of a data set (SSEA
T ) according to ekf (or in general from direct

estimation) for A = Rank(X) is lower or equal to the SSE of the initial estimation, being equal

when the number of variables equals the rank.

Proof:

Let us name {m1, ...,mH} the variables in the group Hm, which are estimated at the same

time. Let us define the following matrices:

EA
Hm

=


eA1,m1

, ..., eA1,mH

... ... ...

eAN,m1
, ..., eAN,mH

, (35)

E0
Hm

=


ϵ01,m1

, ..., ϵ01,mH

... ... ...

ϵ0N,m1
, ..., ϵ0N,mH

. (36)

Let us finally define ΩHm
as the sub-matrix of QA (9) taking the rows and columns corre-

sponding to Hm. From (23) it holds:

EA
Hm

= E0
Hm

·ΩHm , A = Rank(X). (37)

The SSE corresponding to the group of variables follows:

SSEA
Hm

= tr((EA
Hm

)′ ·EA
Hm

), (38)

and
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SSE0
Hm

= tr((E0
Hm

)′ ·E0
Hm

), (39)

where tr stands for the trace of the matrix. From (37) and (38), using the properties of the

trace follows:

SSEA
Hm

= tr((E0
Hm

)t ·Ωt
Hm

·ΩHm ·E0
Hm

), A = Rank(X). (40)

According to the Cauchy’s interlace theorem, if a row-column pair is deleted from a real

symmetric matrix, then the eigenvalues of the resulting matrix interlace those of the original one

[16]. That is, each eigenvalue of the resulting matrix will be between two eigenvalues of the original

matrix. According to this, the eigenvalues of ΩHm interlace those of QA and so they lie in the

interval [0,1]. Thus, the eigenvalues of Ω′
Hm

·ΩHm also lie in the interval [0,1], so that:

tr((E0
Hm

)′ ·Ω′
Hm

·ΩHm ·E0
Hm

) ≤ tr((E0
Hm

)′ ·E0
Hm

), (41)

which is equivalent to SSEA
Hm

≤ SSE0
Hm

for A = Rank(X). The equality SSEA
Hm

= SSE0
Hm

will hold for all variables in Hm satisfying Property 2, so that the number of variables need to be

equal to the rank. Since SSEA
Hm

≤ SSE0
Hm

for A = Rank(X) holds for each group of variables, it

also holds for the SSEA
T , therefore proving the property.

Property 5 The SSE of a data set (SSEA
T ) according to ekf (or in general from TRI) attain-

able by any PCA model is lower bounded by the sum of squares of the non-redundant information

in the data.

Proof:

Since Property 3 holds for each of the variables, it also holds for the SSEA
T , therefore proving

the property.
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C Inconsistency of direct imputation

The inconsistency problem implies that the points of the space where the sum-of-squares of the

error by direct estimation corresponding to observation xn, SSE
A
n , attains its minimum are not

in the latent subspace of the first A PCs. To see this, the partial derivative of SSEA
n for a

point in that subspace is computed. For simplicity, the demonstration will be restricted to the

leave-one-out case. From eq. (A3), the estimation error associated to direct estimation of the

leave-one-variable-out case for the m-th element of xn, for rAn,m = 0 (i.e. the observation lies on

the latent subspace), holds:

eAn,m = ϵ(0)n,m · αA
m, (42)

then

∂(eAn,v)
2

∂xn,m
=


2 · ϵ(0)n,m · (αA

m)2, for v = m

0, for v ̸= m

, (43)

and

∂SSEA
n

∂xn,m
= 2 · ϵ(0)n,m · (αA

m)2. (44)

For a given point to attain a minimum of SSEA
n , the partial derivative with respect to the M

variables should be 0. Therefore, a point xn in the subspace of the first A PCs will not attain

the minimum value of SSEA
n exception made on two possibilities: a perfect initial estimation, i.e.

x
(0)
n = xn, or for null alpha values, i.e. αA

m = 0, ∀m = 1, ..,M . Provided the first choice is possible

because xn is available, then the estimation error would become the reconstruction error and the

ekf would become the rkf. The second choice is not possible for A > 0. Therefore, the direct

estimation will be inconsistent for any number of variables in the data set and for any eigenvalues

distribution.

The inconsistency problem can also be observed for the ratio FA
n = SSEA

n /SSE
A−1
n , used in
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the illustration of this problem in Figure 5 of the paper for A = 1. The partial derivative of FA
n

for each element of xn is:

∂FA
n

∂xn,m
=

(∂SSEA
n /∂xn,m) · SSEA−1

n − (∂SSEA−1
n /∂xn,m) · SSEA

n

(SSEA−1
n )2

, (45)

which should be equal to 0 in the points where FA
n attains its extreme values. Again for

simplicity, A = 1 will be considered. Note that:

SSE0
n =

M∑
v=1

x2
n,v (46)

and

∂SSE0
n

∂xn,m
= 2 · xn,m. (47)

Therefore, for those points in the first PC:

∂F 1
n

∂xn,m
=

2 · ϵ(0)n,m · (α1
m)2 ·

∑M
v=1 x

2
n,v − 2 · xn,m ·

∑M
v=1(ϵ

(0)
n,v · α1

v)
2

(
∑M

v=1 x
2
n,v)

2
. (48)

Considering all partial derivatives of F 1
n should be equal to 0 to attain a minimum value, then

the following equality should hold:

ϵ
(0)
n,m · (α1

m)2

xn,m
=

∑M
v=1(ϵ

(0)
n,v · α1

v)
2∑M

v=1 x
2
n,v

∀m ∈ {1, ...,M}. (49)

This equality will not hold in general, except for very particular cases. For instance, if the

initial estimates x
(0)
n,m are set to 0 (TRI), then all alpha values should be equal to satisfy eq. (49).

Similar theoretical derivations, but further more elaborated, can be performed to show that the

inconsistency problem will affect the ratio FA
n for A > 1.
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